怎么样从日常生活看“博弈论”?

怎么样从日常生活看“博弈论”?

从日常生活看“博弈论”
 
——叶德磊教授在华东师范大学的讲演
 
“博弈论”原本是数学的一个分支,但由于它较好地解决了对竞争等问题的可操作性分析,成为经济学中激荡人心的一个研究领域。可以说,“博弈论”已经改变了经济学的传统轮廓线。从对“博弈论”简要、通俗的介绍中可以发现,我们身边充满了博弈,或者说,我们身边的许多行为、现象都可用博弈来概括。“博弈论”不仅属于经济学,也理应属于社会学、政治学、心理学、历史学等,这些学科也有理由分享“博弈论”那旖旎的学术风光和精细的分析技巧。
 
一、博弈及其分类
 
“博弈论”就是分析博弈行为和博弈决策的一门科学。
 
今年的诺贝尔经济学奖,已于前不久为“博弈论”研究专家罗伯特·奥曼和托马斯·谢林所获得,1994年度和1996年度的诺贝尔经济学奖,也分别由纳什、泽尔滕、海萨尼、莫里斯和维克瑞等“博弈论”专家分享。如此众多的“博弈论”研究专家的频频获奖,凸现了“博弈论”在主流经济学中日益重要的地位。
 
“博弈论”原本是数学的一个分支,但由于它较好地解决了对竞争等问题的可操作性分析,成为经济学中激荡人心的一个研究领域。可以说,“博弈论”已经改变了经济学的传统轮廓线。
 
“博弈论”的英语原文是Game Theory,直译过来就是游戏论、运动论或竞赛论。譬如在足球比赛中,双方都想在努力巩固防守的同时,积极进攻以置对方于“死地”。这种行为就是一种博弈。“弈”在汉语中是下棋的意思,下棋中的双方行为特征也如同足球比赛中双方的行为。当然,扩展开来讲,企业之间的竞争、国家之间的角力等等,都是“游戏”,只是游戏的内容不同而已。
 
我国古代有个“田忌赛马”的故事,说的是齐威王与大将田忌各出三匹马,一对一比赛三场,由于齐威王的最优、次优和较差的三匹马分别跑得比田忌的三匹马快,所以田忌总是以0:3告负。后来田忌的谋士孙膑给田忌出主意,让最差的马去与齐威王最快的马比,而让最优的马去赢齐威王次优的马,让次优的马去赢齐威王最差的马,这样便以2:1取胜。但我们还可进一步设想,如果齐威王知道了田忌的花招后,便会在以后的比赛中也更改出马的次序,当然田忌的出马次序也应改动。双方的出马次序怎样才是最合理的呢?这便是“博弈论”更深一层次研究的问题了。
 
2002年度获奥斯卡大奖的影片《美丽心灵》中主角的原型,便是“博弈论”中纳什均衡的创立者——约翰·纳什。影片中有这样一个情节:在美国普林斯顿大学的酒吧里,4个男生正商量着如何去追求一位漂亮女生,当时还正在大学读书的纳什却在朦胧的“博弈论”思维逻辑引导下喃喃自语:“如果他们4个人全部去追求那漂亮女生,那她一定会摆足架子,谁也不睬。然后再去追其他女孩子,别人也不会接受,因为没人愿意当‘次品’。但如果他们先追其他女生,那么漂亮女生就会感到被孤立,这时再追她就会容易得多。”在纳什眼里,追求女生就是一场“博弈”,而“博弈”是要遵循一定规则的,是需要“博弈”策略的。
 
我们再从经济决策上来看“博弈论”。假如你是一个公司的老总,你在决定是否将自己的产品降价以及降价多少时,必须首先要考虑至少以下几个方面的问题:消费者将会增加购买吗?大概会增加多少购买量呢?其他同种产品的厂家也会降价吗?等等。你只要是理性的话,一定会在对这些问题考虑的基础上来作出你的决策。所以说,“博弈论”主要是研究各相关行为主体的决策行为相互影响、相互作用的假定条件下,理性的行为主体如何决策、以及这种决策的均衡等问题的。在这里,决策均衡是一个经济学概念,意味着最佳决策或最佳决策的组合。因为只要决策是最佳的,相关的行为主体就不会去改变它,从而它处于稳定、均衡的状态。再简而言之,“博弈论”就是分析博弈行为和博弈决策的一门科学。
 
我们可以从不同角度对博弈进行分类:
 
一是分为合作博弈与非合作博弈。如果各博弈方能达成某种有约束力的契约或默契,以选择共同的策略,此种博弈就是合作博弈。反之,就属于非合作博弈。企业之间的联合定价就属于合作博弈,而经常挑起价格战的企业采用的便主要是非合作博弈。在合作博弈中往往包含着非合作博弈,如石油输出国组织是合作博弈的产物,但其中为了各自利益的超产和争吵又属于非合作博弈。
 
二是分为零和博弈、常和博弈与变和博弈。零和博弈指的是所有博弈方的得益总和为零,各种赌博就属于零和博弈。例如4个人参与一场赌博,其中3个人输了总共1000元,那么另外一个人必然赢了1000元。期货交易市场的参与者之间的关系也属于零和博弈。人们平常所说的“损人利己”实际上也包含有零和博弈的意思。常和博弈则是指所有博弈方的得益总和等于非零的常数。例如若干人分配一份总额既定的财产乃典型的常和博弈。变和博弈则是指随着博弈参与者选择的策略不同,各方的得益总和也不同。如在同一个股票市场,面对同样的大盘走势,伴随着投资者的投资策略不同,有可能大部分人赚钱而小部分人亏钱,也有可能小部分人赚而大部分人亏,甚至还有可能所有人都赚或都亏。
 
三是分为静态博弈与动态博弈。所有博弈方同时或可看作同时选择策略,采取行动的博弈是静态博弈。譬如,在投标活动中,投标人投出标书一般虽有先后,但因为所有投标人在开标前都不知道其他投标人的标价,因此可看作同时选择策略,采取行动。体育竞赛中,双方出场阵容的选择也属于静态博弈。动态博弈则是指博弈方的选择和行动有先后之分,后行者可以根据先行者的策略选择来决定自己的策略。如A企业降价后,B企业也跟着降价;足球比赛中,一方换上一名攻击性前卫后,另一方针对性地换上一名后卫;如此等等。
 
四是分为完全信息博弈与不完全信息博弈。在前一种博弈中,每一个参与者都拥有全部的相关信息,只拥有部分相关信息的便属于后一种博弈。
 
二、“博弈论”中的经典案例
 
“博弈论”中一些经典案例,不仅使专业研究人士如醉如痴,也使一些普通民众兴致盎然。
 
“博弈论”中有一些由点及面、发人深思的经典案例,这些案例不仅使专业研究人士如醉如痴,也使一些普通民众兴致盎然;不仅成为“博弈论”中的一道亮丽风景,也是整个经济学领域中的学术奇葩。
 
1、囚徒困境
 
假设警察局抓住了两个合伙犯罪的嫌疑犯,但获得的证据并不十分确切,对于两者的量刑就可能取决于两者对于犯罪事实的供认。警察局将这两名嫌疑犯分别关押以防他们串供。两名囚徒明白,如果他们都交代犯罪事实,则可能将各被判刑5年;如果他们都不交代,则有可能只会被以较轻的妨碍公务罪各判1年;如果一人交代,另一人不交代,交代者有可能会被立即释放,不交代者则将可能被重判8年。
 
对于两个囚徒总体而言,他们设想的最好的策略可能是都不交代。但任何一个囚徒在选择不交代的策略时,都要冒很大的风险,一旦自己不交代而另一囚徒交代了,自己就将可能处于非常不利的境地。对于囚徒A而言,不管囚徒B采取何种策略,他的最佳策略都是交代。对于囚徒B而言也是如此。最后两人都会选择交代。因此,囚徒困境反映了个体理性行为与集体理性行为之间的矛盾、冲突。
 
囚徒困境现象在现实生活中比比皆是。记得姜昆和唐杰忠过去说过一个公共楼道占用问题的相声。住户在公共楼道里堆满了杂物,结果大家都极不方便,以致即将分娩的妇女都没法及时被送往医院。但你如果不占用公共楼道,别人也会占用。每一居住面积狭小的住户从自我利益最大化出发,都会选择占用。但占用的结果却最终损害了大家的利益。
 
前几年,我国彩电市场上,生产厂家基于自我利益选择大幅降价,但由此引发的价格战使所有生产厂家都遭受重创,这也是一种囚徒困境。
 
2、智猪博弈
 
假设猪圈里有一大一小两只猪,猪圈的一头有一个猪食槽,另一头有一个控制猪食供应的按钮,揿一下按钮会有10个单位的猪食进槽。若小猪去揿,大猪先吃,大猪可吃到9个单位,小猪揿好后奔过来,则只能吃到1个单位;若大猪去揿,小猪先吃,小猪可吃到6个单位,大猪吃到4个单位;若同时去揿,奔过来再同时吃,大猪可吃到7个单位,小猪吃到3个单位。在这种情况下,不论大猪采取何种策略,小猪的最佳策略是等待,即在食槽边等待大猪去揿按钮,然后坐享其成。而由于小猪总是会选择等待,大猪无奈之下只好去揿按钮。这种策略组合就是名闻遐迩的“纳什均衡”。它指的是,在给定一方采取某种策略的条件下,另一方所采取的最佳策略(此处为大猪揿按钮)。
 
智猪博弈现象在日常生活中也是司空见惯的。如大股东行使监督上市公司的职责,而小股东则坐享这种监督带来的利益,即所谓“搭便车”;爱清洁的人经常打扫公共楼道,其他人搭便车;山村中出外跑运输、做生意的人掏钱修路,其他村民走修好的路;等等。
 
3、斗鸡博弈
 
两只公鸡面对面争斗,继续斗下去,两败俱伤,一方退却便意味着认输。在这样的博弈中,要想取胜,就要在气势上压倒对方,至少要显示出破釜沉舟、背水一战的决心来,以迫使对方退却。但到最后的关键时刻,必有一方要退下来,除非真正抱定鱼死网破的决心。
 
这类博弈也不胜枚举。如两人反向过同一独木桥,一般来说,必有一人选择后退。在该种博弈中,非理性、非理智的形象塑造往往是一种可选择的策略运用。如那种看上去不把自己的生命当回事的人,或者看上去有点醉醺醺、傻乎乎的人,往往能逼退独木桥上的另一人。还有夫妻争吵也常常是一个“斗鸡博弈”,吵到最后,一般地,总有一方对于对方的唠叨、责骂装聋作哑,或者干脆妻子回娘家去冷却怒火。冷战期间,美苏两大军事集团的争斗也是一种“斗鸡博弈”。在企业经营方面,在市场容量有限的条件下,一家企业投资了某一项目,另一家企业便会放弃对该项目的觊觎。
 
当然,“博弈论”中还有其他一些著名案例,这里无法一一加以剖析。上述的三大案例、尤其是前两大案例,已经成为经济学中的专用名词,成为经济学中对许多问题进行分析的分析支架。
 
三、博弈策略
 
博弈策略的成功运用须依赖一定的环境、条件,在一定的博弈框架中进行。
 
谈到博弈策略问题,可以说在我国传统文化中,包含有许多精妙的博弈策略。许多成语及成语典故,就是对博弈策略的令人叫绝的运用和归纳。如围魏救赵、背水一战、暗渡陈仓、釜底抽薪、狡兔三窟、先发制人、借鸡生蛋等等。当然,博弈策略的成功运用须依赖一定的环境、条件,在一定的博弈框架中进行。
 
在博弈中,人们经常采用威胁策略,但其他博弈方也会采取对威胁的辨别和反威胁策略。经济学家泽尔腾就将不可置信的威胁剔除出去,解决了一个博弈中可能存在多个“纳什均衡”的问题,从而使人们能方便地预测博弈的结果。举一个通俗的例子来说,父母不同意女儿所交的男友,威胁女儿说:“如果你再同他交往,我们就与你断绝关系。”但这样的威胁往往是不可信的。对爱情执着的聪明女儿会置父母的不可置信的威胁于不顾,继续与男友交往甚至最终与之结婚,父母最后也会承认那个当初他们并不喜欢的女婿。这个结果便是剔除了不可置信的威胁后的“纳什均衡”,“博弈论”中称其为“子博弈精炼纳什均衡”。
 
“博弈论”研究还发现,在重复博弈中,如果博弈的次数是无限的,博弈方会选择相互合作的策略。因为如果一家企业采取不合作的低价倾销策略,其他企业也会采取相同的策略进行报复性竞争,长期下去,这些企业都将完蛋。企业深谙此理后,便会在相互默契中将价格维持在一个合适水平,尽量避免长期性、大规模的低价杀伤战。美国水表生产的四大巨头企业(班琪表业等)在长达几十年的时期内都维持了这种定价方面的良好合作关系,成为“博弈论”中经常被提及的案例。
 
但如果重复博弈的次数较少,则合作就不可能实现。如生产彩电的某企业已决定转产而不再生产彩电,它就不会与其他彩电企业继续价格方面的合作,而可能对库存品低价甩卖,因为别的彩电企业对它没有报复的机会了。一些人在快调离原单位或快退休时的拙劣表现,也属此列(包括所谓的“59岁现象”)。
 
再举一个生活中的例子:如果你去菜场买菜,当你对某种菜的质量、口味等有疑虑时,卖菜的阿姨常会讲:“你放心,我一直在这儿卖呢!”这句朴实的话中其实包含了华丽的“博弈论”思想:我卖与你们买是一个次数无限的重复博弈,我今天骗了你,你们今后就不会再来我这儿买了,所以我不会骗你的,菜的质量、口味肯定没问题。而你在听了阿姨的上述一句话后,常常也会打消疑虑,买菜回家。
 
在博弈中,人们掌握的信息经常是不完全的,这就需要在博弈进行过程(即动态博弈)中不断地收集信息、积累知识、修正判断。成语故事“黔驴技穷”实际上就包含了一个不完全信息动态博弈。毛驴刚到贵州时,老虎摸不准这个大动物究竟有多大本领,因而躲在树林里偷偷观察,这在老虎当时拥有的信息条件下是一种最优策略选择。过了一阵子,老虎走出树林,逐渐接近毛驴,就是想获得有关毛驴的进一步信息。一天,毛驴大叫一声,老虎吓了一跳,急忙逃走,这也是最优策略选择。又过了一些天,老虎又来观察,并对毛驴挨得很近,往毛驴身上挤碰,故意挑衅它。毛驴在忍无可忍的情况下,就用蹄子踢老虎,除此之外,别无它法。老虎最终了解到毛驴的真实本领后,就扑过去将它吃了。在这个故事里,老虎通过观察毛驴的行为逐渐修正对毛驴的看法,直到看清它的真面目。事实上,毛驴的策略也是正确的,它知道自己的技能有限,总想掩藏自己的真实技能。老虎吃掉毛驴的策略,在“博弈论”中就是所谓的“精炼贝叶斯均衡”。
 
人们常提到的“上有政策、下有对策”,其实是对管理者与被管理者之间的动态博弈的一种描述,面对上边的政策,下边寻求对策是正常的、必然的。从“博弈论”的角度讲,上边的政策制定必须在考虑到下边可能会有的对策的基础上进行,否则,政策就不会是科学、合理的。
 
从以上对“博弈论”简要、通俗的介绍中可以发现,我们身边充满了博弈,或者说,我们身边的许多行为、现象都可用博弈来概括。“博弈论”不仅属于经济学,也理应属于社会学、政治学、心理学、历史学等,这些学科也有理由分享“博弈论”那旖旎的学术风光和精细的分析技巧。
 
讲演者小传
 
叶德磊
 
华东师范大学经济系主任、教授、博士生导师。中华外国经济学说研究会理事,上海市经济学会证券市场研究专业委员会副主任。主要研究方向为西方经济学、证券市常著有《微观经济学》、《宏观经济学》、《证券投资原理》、《中国证券市场发展研究》等。